Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles

Jed J. Cohen

with Johannes Reichl¹ Andrea Kollmann1 Valeria Azarova¹

¹ Energieinstitut an der Johannes Kepler Universität, Linz, Österreich cohen@energieinstitut-linz.at

15th February, 2019

Adoption research

- There is much interest in solar (PV) and electric vehicle (EV) adoption
- Prosumerism and citizen participation in the energy transition are EU goals (e.g. SET Plan)
- Many research papers look into the determinants of household adoption decisions

Past solar adoption research has shown:

- Return on investment (ROI) and incentive policies matter (Crago and Chernyakhovskiy, 2017 JEEM).
- Choice of adoption and scale of adoption are systematically different (Beckman and Xiarchos, 2013 Renewable Energy).
- Personal environmental motivations and life-cycle considerations are also important (Schelly, 2014 ERSS).

Past EV adoption research has shown:

- High initial cost is a major hurdle to adoption (Rezvani et al., 2015 Transportation Research Part D).
- Lack of charging infrastructure is a big barrier (Biresselioglu et al., 2018 Transportation Research Part A).
- Lack of trust in new technology and 'range anxiety' are also barriers (Biresselioglu et al., 2018 Transportation Research Part A).

No past research has investigated the link between household PV, and large appliance adoption

- Large appliances imply higher energy consumption, and more room to offset household energy costs
- Some large appliances can be loadshifted, to use more household-produced solar
 - this can save more money and increase ROI,
 - and increase perception of environmental action/ self-sufficiency
- With this knowledge we can better understand energy behavior and the indirect effects of policies and social innovations

Q-complements: linking PV adoption to large appliance ownership

The goods Y_1 (PV) and Y_2 (EV) are q-complements if for some utility function $U(Y_1, Y_2, Z)$:

$$\frac{\partial^2 U}{\partial Y_1 \partial Y_2} > 0$$

We show theoretically that this condition implies correlated demands for PV units and EVs.

People consume these goods in small, discrete quantities.

In a random utility framework with a linear representation we have:

$$U_i(Y_{1i}, Y_{2i}, Z_i | M_i, p_1, p_2) = \gamma_i Z_i + \alpha_{1i} Y_{1i} + \alpha_{2i} Y_{2i} + \alpha_{3i} Y_{1i} Y_{2i} + \hat{\epsilon}_i$$

Where $\alpha_{3i} > 0 \implies$ q-complementarity between the goods

Imagine a situation where the household i has already purchased a PV unit $(Y_{1i} = 1)$, and considers getting an EV:

$$U_i(1, Z_i|Y_{1i} = 1, M_i - p_1, p_2) - U_i(0, Z_i|Y_{1i} = 1, M_i - p_1, p_2)$$

= $\alpha_{2i} + \alpha_{3i} - \gamma_i p_2 + (\dot{\epsilon}_i - \dot{\epsilon}_i)$

Adoption occurs if: $U_i(1,\cdot) - U_i(0,\cdot) > 0$

And when

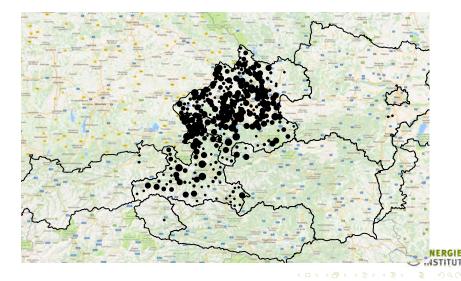
$$\alpha_{3i} > 0 \implies E[U_i(1,\cdot) - U_i(0,\cdot)]$$
 is higher.

Over a sample of households, this implies we should observe correlated demands for q-complimentary goods

Research Objectives

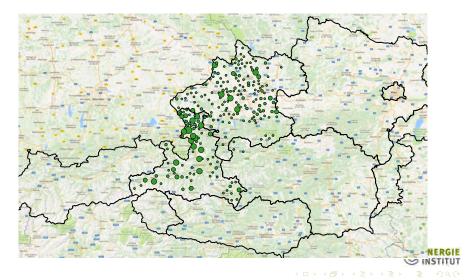
- Better understand the interrelation between important household appliance purchases
- Draw inference about α_3 through statistical models
 - If $\alpha_3 > 0$ then we have q-complementarity between PV adoption and large ticket purchases, notably EV
- Identify potential unintended consequences or benefits from solar, EV, or energy efficiency policy

Data on PV and appliance ownership

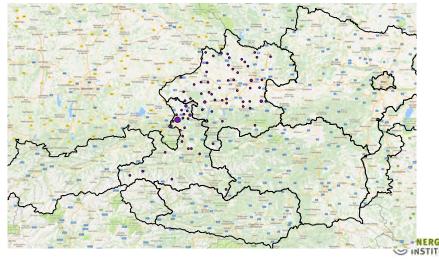

LEAFS project survey:

- Collected data from household electricity customers in Summer, 2018
- Covered two Austrian states: Upper Austria and Salzburg
- Asked about the ownership of household appliances, and plans to change energy practices
- Socio-demographic information and past actions/views were also collected

Survey respondents aggregated by postal code region


PV and EV adoption in survey respondents

	PV ownership			
EV ownership	not owned	owned	Total	
not owned	1 865	569	2 434	
owned	32	75	107	
Total	1 897	644	2 541	



Locations of PV owners

Locations of EV owners

Locations of future EV purchasers

Explanatory variables from the survey

Variable	Description	Mean	Median	Std. Dev.
PV_ownership	=1 if HH owns a PV system	0.25	0	0.44
EV_ownership	=1 if HH owns an EV	0.04	0	0.20
EV_plan*	=1 if HH plans to buy an EV in next 5 years	0.25	0	0.43
electric_heat	=1 if the HH's main heater uses electricity	0.23	0	0.42
dryer_ownership	=1 if HH owns an electric dryer	0.61	1	0.49
pool_ownership	=1 if HH owns a swimming pool	0.19	0	0.39
aquarium_ownership	=1 if HH owns an aquarium	0.04	0	0.20
waterbed_ownership	=1 if HH owns a waterbed	0.04	0	0.19
sauna_ownership	=1 if HH owns a sauna	0.33	0	0.47
owns_home	=1 if HH owns their residence	0.88	1	0.33
livingspace_home	sq. meters of indoor living space	155.30	140	76.19
singlefamily_home	=1 if the HH lives in a detached home or duplex	0.76	1	0.43
household_size	Number of persons in HH	2.74	2	1.26
income_cat1	=1 if monthly HH net income < 1,800 EUR	0.16	0	0.36
income_cat2	=1 if monthly HH net income 1,800-2,900 EUR	0.36	0	0.48
income_cat3	=1 if monthly HH net income 2,900-4,400 EUR	0.34	0	0.47
income_cat4	=1 if monthly HH net income > 4,400 EUR	0.15	0	0.35
high_environmentalism	=1 if HH believes environment/climate	0.79	1	0.41
	are "primarily" or "very" important in enery issues			
UpperAT	=1 if resident is from the state of Upper Austria	0.68	1	0.47
population	population in postal code region 1000's of persons	18.17	3.33	66.13
leftvoters	Pct. of postal code region that voted for "SPOE" political party in last election	26.16	22.99	6.97 ENER

N=2,541; HH= household; *N=2,434 for this variable as the 107 HHs who already own EV are dropped.

Correlations in appliance purchases

	pv_own	ecar_own	heat_gridtied	dryer	pool	aqua	waterbed	sauna
pv_own	1							
ecar_own	0,2255	1						
heat_gridtied	0,1537	0,0266	1					
dryer	0,1261	0,0254	0,0868	1				
pool	0,0808	0,053	0,0507	0,1765	1			
aqua	0,0372	-0,0151	0,0065	0,0748	0,0598	1		
waterbed	0,0301	0,0158	0,0121	0,0768	0,132	0,0712	1	
sauna	0,1133	0,0591	0,0539	0,1389	0,241	0,0135	0,0715	1

Probit model

We use probit specifications to model binary adoption choice

$$egin{aligned} y_i &= 1 & ext{if} \quad y_i^* > 0 \ y_i &= 0 & ext{otherwise} \ & ext{with} \ y_i^* &= eta' \mathbf{x}_i + \epsilon_i, \quad \epsilon \sim \textit{N}(0,1) \end{aligned}$$

where y_i^* is a latent variable measuring the change in utility from adopting an appliance

Probit model results predicting PV and EV ownership

	Dependent Variable is PV_ownership		is EV_o	Dependent Variable is <i>EV_ownership</i>		
	Marg. Eff.	Std. Err.	Marg. Eff.	Std. Err.		
EV_ownership	0.314***	(0.0329)				
PV_ownership		, ,	0.0770***	(0.00943)		
electric_heat	0.0961***	(0.0167)	-0.0104	(0.00935)		
dryer_ownership	0.0279*	(0.0169)	-0.0059	(0.00835)		
pool_ownership	0.0372*	(0.0200)	0.00453	(0.00933)		
aquarium_ownership	0.0189	(0.0351)	-0.0284	(0.0217)		
waterbed_ownership	0.0180	(0.0386)	0.0183	(0.0185)		
sauna_ownership	0.0417**	(0.0169)	0.00746	(0.00814)		
owns_home	0.0800**	(0.0342)	0.00117	(0.0163)		
livingspace_home	0.000537***	(0.000117)	0.0000251	(0.0000504)		
singlefamily_home	0.107***	(0.0242)	-0.00657	(0.0112)		
household_size	0.0346***	(0.00675)	-0.000188	(0.00318)		
income_cat1 (<1800)	-	-	=			
income_cat2 (1800-2900)	0.0213	(0.0251)	0.00757	(0.00914)		
income_cat3 (2900-4400)	-0.00764	(0.0248)	0.0292***	(0.0106)		
income_cat4 (>4400)	-0.00760	(0.0293)	0.0329**	(0.0137)		
high_environmentalism	0.0376**	(0.0186)	0.0194*	(0.0108)		
UpperAT	-0.248***	(0.0176)	0.00901	(0.00917)		
population (1000's)	-0.000673**	(0.000247)	0.0000828	(0.000109)		
leftvoters (%)	-0.00503***	(0.00116)	0.000257	(0.000620)		
Pseudo R-sq.		0.2		0.14		

 $N{=}\;2{,}541\;;\;{*}\;p{<}0.1,\;{**}\;p{<}0.05,\;{***}\;p{<}0.01$

Endogeneity between PV and EV adoption

If decision to adopt is made jointly, as suggested by our theory, or similar unobservables influence both decisions (e.g. localized incentives, peer effects, etc.)

Test this with Recursive Bivariate Probit:

$$\begin{aligned} y_{1i}^* &= \beta' \mathbf{x}_{1i} + \alpha y_{2i} + \epsilon_{1i} \\ y_{2i}^* &= \beta' \mathbf{x}_{2i} + \epsilon_{2i} \\ \text{with} \\ \left[\epsilon_{1i}, \epsilon_{2i} \right] &\sim \Phi \big[(0,0), (1,1), \zeta \big], \quad \zeta \in \big[-1,1 \big] \end{aligned}$$

Where ζ is an estimable correlation parameter. We test the hypothesis $\zeta=0$ and cannot reject at the 1% level, implying endogeneity exists

Table: Partial effects from recursive bivariate probit model on future planned EV purchase with PV ownership endogenously determined

	Sample excluding current EV owners $N = 2.434$				
Variable	Marg. Eff	Std. Err.	Z-stat.	$Prob{>}Z$	
PV_ownership	0.1867*	0.1071	1.74	0.08	
owns_home	0.045	0.0324	1.40	0.162	
livingspace_home	0.0002	0.0002	1.13	0.258	
singlefamily_home	-0.0255	0.0277	-0.92	0.356	
household_size	0.0020	0.009	0.22	0.823	
income_cat1 (<1800)					
income_cat2 (1800-2900)	0.0763***	0.0245	3.12	0.002	
income_cat3 (2900-4400)	0.093***	0.0251	3.71	0.000	
income_cat4 (>4400)	0.1651***	0.0327	5.05	0.000	
high_environmentalism	0.0636***	0.0226	2.83	0.005	
UpperAT	-0.0186	0.042	-0.44	0.657	
population (1000's)	0.0005*	0.0003	1.86	0.062	
leftvoters (%)	-0.0002	0.0014	-0.14	0.889	

^{*} p<0.1, ** p<0.05, *** p<0.01

Conclusions

- There exists evidence for q-complementarity between PV and electricity-intensive appliances
 - Most strongly EVs
 - Also for electric central heaters, dryers, saunas, and pools
- This would mean that policies which increase PV adoption may have the added benefit of increasing EV adoption.
- Onversely, policies that increase energy efficiency, or reduce quantities of large appliances may reduce PV adoptions.
- Recognizing unintended consequences is important with so many policies focused on EV, PV, and energy efficiency.

We gratefully acknowledge funding for this research from the Austrian Klima und Energiefonds under the LEAFS project. Additional funding for the analysis was provided through the ECHOES project under the European Union's Horizon 2020 research and innovation programme , grant agreement # 727470

