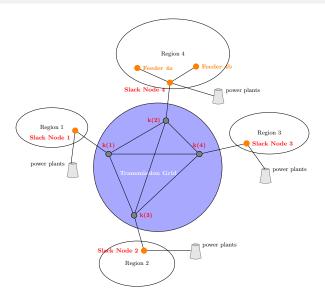
Callia - a design for a digitized flexibility trading platform and its operative and economic benefits for DSOs and TSOs

Bert Claessens, Rainer Enzenhöfer, Josef Haunschmied

Josef.Haunschmied@tuwien.ac.at

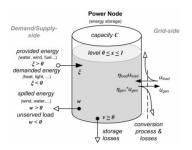
IEWT 2019, February 14, 2019

- Expansion of RES
- Impact on all voltage levels
- Higher volatility in generation
- Markets to acquire flexibility are needed
- Grid topologies have to be integrated
- Digitization for smart grids
- Integration of small and medium scale flexibility units
- Handling complexity
- Local/regional offers but system wide competition

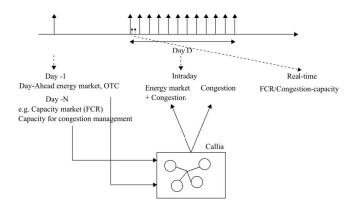

2 / 16

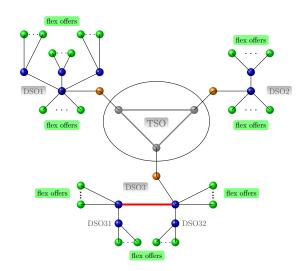
Flexiblity Trading - Use Cases

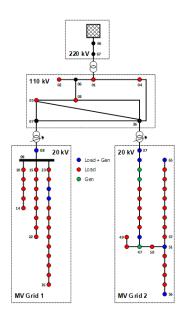
- Use Case I: Energy Neutral Flexibility Trading
- Use Case II: Congestion Management
- Use Case III: Voltage Control
- Use Case IV: Loss Mitigation


System Approach

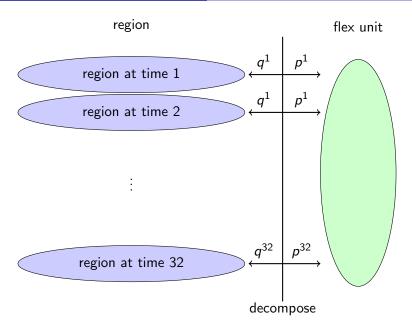
System


Flexibility Offer Types


Tank Offers



Batteries, Market Aggregator, office building/air-condition


Receding Horizon - Model Predictive Control

8 / 16

Duplicated variables for decomposition

 $\alpha_i^+(t)$... decomposition variables of $\alpha_i^+(t)$ charging $\alpha_i^-(t)$... decomposition variables of $\alpha_i^-(t)$ discharging $S_i(t)$... decomposition variables of $S_i(t)$ SoC

Obviously, in the final feasible solution, decomposed variables have to be equal:

$$S_i(t) = \widetilde{S}_i(t), i \in B$$
 decomposition $\alpha_i^+(t) = \widetilde{\alpha_i^+}(t), i \in B$ decomposition $\alpha_i^-(t) = \widetilde{\alpha_i^-}(t), i \in B$ decomposition

Variables $P_i(t)$ at slack node i need not be duplicated as the Note: variables $P_{k(i)}$ takes over the role of duplicated variables. However, we have to consider a small adaption, as the flow direction changes (i.e. we have to change signs):

$$P_i(t) = -P_{k(i)}(t)$$
, slack node i decomposition

[EWT 2019, February 14, 2019]

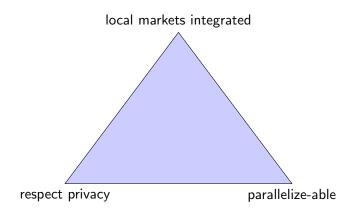
[10]

Lagrangian Function

Variables q are the duplications of the variables p.

$$egin{aligned} \mathit{min}_{\mathsf{x},p,q} & & \sum_t \ \mathit{C}^t(x^t,q^t) \\ s.t. & & (x^t,p^t) \in \mathit{S}^t \\ & & q \in \mathit{D} \\ & & p^t = q^t \end{aligned}$$

For each component of p-q, we define a shadow price and define a set $\mu = (\mu^1, ..., \mu^t)$ of dual variables (vectors)


$$L(x, p, q, \mu) = \sum_{t} C^{t}(x^{t}, q^{t}) + \sum_{t} \mu^{t} \cdot (p^{t} - q^{t})$$

Dual function θ : $\theta(\mu) := min_{(x,p) \in S, q \in D} L(x, p, q, \mu),$ Dual problem $\max_{\mu} \theta(\mu)$.

Market algorithm - our findings

- Bundle Method
 - Linear approximation of dual function
 - Synchronization Use Case 1
 - Had to limit shadow prices
- Bundle Method with step-size control
 - Quadratic penalty on step-size, Armijo like parameters etc
 - Use Case 2 extreme case: unfeasible unbounded
 - Exit scenario capped shadow prices
- Adding 1 step Newton-Rhapson for linearization
 - Use Case 3 and Use Case 4
 - Still no satisfactory performance
- ADMM (Alternating Direction Method of Multipliers)

Finally, my thanks to the Callia project partners

DSO: Stadtwerke Heidelberg, Bedas Istanbul

TSO: Transnet BW, Bedas Istanbul

Grid communication: Salzburg Research, REstore Antwerp, VITO Genk

RES: ISC Konstanz (PV)

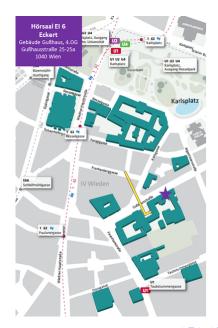
Flex: REstore Antwerp (aggregator), Blue.sky (batteries), Bedas

Scientific: Salzburg Research, Univ. Stuttgart, TU Wien, VITO Genk

Power Electronics: Devolo, Pavotek

"Freedom, equality, democracy: blessings or chaos for energy markets?"

The Energiewende might cause chaos, freedom, equality and democracy is the chance to get the chaos under control. A system-wide grid-based welfare optimizing flexibility market might help to take this opportunity.


Thank you for your attention

23 Nodes Generic Grid Model

Biogas/Others▶ PV	Slack Node	
10 Nodes (20 kV) 8	0,26Km 0,66Km 3 • 🔊 1,40Km	0,50Km 16 Feeder 2 12 Nodes (20 kV) 15 0,25Km 1,00Km 4,4Km 19 0,14Km 17 13
0,80Km 10 2,00Km	4 1,90Km 5	0,70Km 12 2,15Km 0,35Km 23 0,17Km 22 0,15Km
All Nodes have a load connected (Ex	ccept Slack Node)	R' = 0,168 Ω/Km (For All Lines) r' = 0,042 p.u/Km (20kV/100MVA Base) Max Load per Line: 8 MW

Node	Load [KW]	Gen [kW]
1	0	0
2	28	782
3	28	740
4	462	103
5	145	0
6	338	0
7	261	0
8	80	113
9	4084	19
10	124	0
11	49	524
12	110	0
13	122	0
14	26	0
15	173	0
16	26	44
17	212	42
18	264	223
19	527	0
20	258	0
21	423	0
22	595	0
23	347	0
Sum	8683	2591

